Given a number n, write a program to find the sum of the largest prime factors of each of nine consecutive numbers starting from n. g(n) = f(n) + f(n+1) + f(n+2) + f(n+3) + f(n+4) + f(n+5) + f(n+6) + f(n+7) + f(n+8) where, g(n) is the sum and f(n) is the largest prime factor of n For example, g(10)=f(10)+f(11)+f(12)+f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=5 + 11 + 3 + 13 + 7 + 5 + 2 + 17 + 3 =66

Given a number n, write a program to find the sum of the largest prime factors of each of nine consecutive numbers starting from n.
g(n) = f(n) + f(n+1) + f(n+2) + f(n+3) + f(n+4) + f(n+5) + f(n+6) + f(n+7) + f(n+8)
where, g(n) is the sum and f(n) is the largest prime factor of n

For example,
g(10)=f(10)+f(11)+f(12)+f(13)+f(14)+f(15)+f(16)+f(17)+f(18) 
        =5 + 11 + 3 + 13 + 7 + 5 + 2 + 17 + 3 
        =66 
 Source Code:-
'''
Given a number n, write a program to find the sum of the largest prime factors of each of nine consecutive numbers starting from n.
g(n) = f(n) + f(n+1) + f(n+2) + f(n+3) + f(n+4) + f(n+5) + f(n+6) + f(n+7) + f(n+8)
where, g(n) is the sum and f(n) is the largest prime factor of n
For example,
g(10)=f(10)+f(11)+f(12)+f(13)+f(14)+f(15)+f(16)+f(17)+f(18)
=5 + 11 + 3 + 13 + 7 + 5 + 2 + 17 + 3
=66
'''
#PF-Assgn-42
def find_factors(num):
#Accepts a number and returns the list of all the factors of a given number
factors = []
for i in range(2,(num+1)):
if(num%i==0):
factors.append(i)
return factors
def is_prime(num, i):
#Accepts the number num and num/2 --> i and returns True if the number is prime ,else returns False
if(i==1):
return True
elif(num%i==0):
return False;
else:
return(is_prime(num,i-1))
def find_largest_prime_factor(list_of_factors):
large=[]
for i in list_of_factors:
if is_prime(i,i//2)==True:
large.append(i)
return max(large)
#Accepts the list of factors and returns the largest prime factor
def find_f(num):
#Accepts the number and returns the largest prime factor of the number
f=find_factors(num)
l=find_largest_prime_factor(f)
return l
def find_g(num):
#Accepts the number and returns the sum of the largest prime factors of the 9 consecutive numbers starting from the given number
sum=0
consicutive=[i for i in range(num,num+9)]
for i in consicutive:
largest_prime_factor=find_f(i)
sum=sum+largest_prime_factor
return sum
#Note: Invoke function(s) from other function(s), wherever applicable.
print(find_g(10))

No comments:

Post a Comment

Write a python function, find_correct() which accepts a dictionary and returns a list as per the rules mentioned below. The input dictionary will contain correct spelling of a word as key and the spelling provided by a contestant as the value.

Write a python function,  find_correct()  which accepts a dictionary and returns a list as per the rules mentioned below. The input diction...